
Entwicklung der KI-Technologien
Zwischen der aktuellen Bedeutung des Themas Künstliche Intelligenz und der KI-Kompetenz der meisten Menschen besteht eine große Diskrepanz. Diese verbreitete Know-how-Lücke reicht von Schülern und Lehrern bis zu Führungskräften und Politikern. Daher erscheint es wichtig, sich mit der Entwicklung und dem aktuellen Stand der KI-Technologien zu beschäftigen, die bereits vor knapp 70 Jahren entstanden sind, was Vielen nicht bekannt ist.
Dieser neue Blogpost ist die Fortsetzung unserer Reihe zu Wettbewerbsvorteilen mit einer wissensspezifischen Künstlichen Intelligenz. Hierin skizziere ich die Wurzeln der KI-Technologien und erläutere den Hype und die Ernüchterung bei großen Sprachmodellen.
Schulungsoffensive ausgehend vom AI Act
Der AI Act der Europäischen Union fordert von Unternehmen, dass sie ihren Mitarbeitenden praktisches Know-how zur Funktionsweise und den Einsatzmöglichkeiten von KI sowie den Chancen und Grenzen der Technologie vermitteln müssen. Diese EU-Verordnung 2024/1689 ist in Deutschland am 2. Februar 2025 in Kraft getreten.1 Für einzelne Nutzergruppen wie z.B. IT-, Rechts-, Personal- und operative Einheiten können spezifische Trainingsmodule notwendig sein, die auf das vorhandene Wissensniveau auszurichten sind. Darüber hinaus erscheint es sinnvoll, die Vermittlung von KI-Know-how an die jeweilige Situation des Unternehmens anzupassen. Ein Einstieg sind Kenntnisse zur Entwicklung der Künstlichen Intelligenz (KI) und ihrer verschiedenen Technologien.
Von der symbolischen KI und neuronalen Netzen zu „KI-Wintern“
Die Künstliche Intelligenz hat in ihrer langen Entwicklungsgeschichte eine Reihe von Höhen und Tiefen erlebt. In den Computerwissenschaften der 1950er Jahre sind bei dem Versuch, Maschinen zu entwickeln, die menschliche Intelligenz nachahmen, zwei Herangehensweisen entstanden:2
- Die symbolische KI basiert auf programmierbaren Regeln und einer systematischen Logik mit dem Ziel, Wissen zu repräsentieren und daraus Schlussfolgerungen abzuleiten. Dabei versucht man, ein reales Problem durch die Programmierung von Symbolen und ihren Beziehungen
- Angeregt durch die Vernetzung des Gehirns streben neuronale Netze an, Lernprozesse zu simulieren, indem sie Verbindungen zwischen künstlichen Neuronen nutzen. Diese Methode stützt sich auf ein datengetriebenes maschinelles Lernen, um Muster und Zusammenhänge zu finden.
Als Geburtsstunde der Künstlichen Intelligenz gilt das von Wissenschaftlern wie John McCarthy und Marvin Minsky 1956 initiierte Dartmouth-Sommer-Forschungsprojekt, bei dem die symbolische KI im Mittelpunkt stand. Diese bildet die Grundlage für Expertensysteme, die versuchen, Regeln und Entscheidungsketten in Computercode zu übersetzen. Deren Verfechter haben aber die Komplexität des Gehirns unterschätzt, was in den 1970er Jahren zum ersten „KI-Winter“ führte.
Das erste neuronale Netz konzipierte der Psychologe Frank Rosenblatt, der in Dartmouth nicht dabei war, ebenfalls bereits 1956. Inspiriert durch die Arbeit von Rosenblatt entwickelte der Physiologe, kognitive Psychologe und Informatiker Geoffrey Hinton 1986 an der Universität von Toronto ein mehrschichtiges neuronales Netz und einen Algorithmus, der es dem System ermöglichte, aus seinen Rechenfehlern zu lernen. Diese Methode der Fehlerrückverteilung (Backpropagation) führte zu einer Verfeinerung der Antworten. Sie bildete den Durchbruch für die neuronalen Netze. Allerdings reichte die Rechenleistung für große Datenmengen nicht und noch vor der Jahrtausendwende kam es zu einem zweiten „KI-Winter“.
Deep Learning
Eine Verbesserung der Hardware erreichte man mit den superschnellen Chips der Grafikprozessoren (Graphics Processing Units GPU), die der US-Halbleiterhersteller Nvidia zunächst für Videospiele entwickelte und später für das Training mehrschichtiger neuronaler Netze nutzte. Entscheidend waren dann verbesserte Methoden der Bilderkennung, die kleine Fehler nutzten, um Muster zu erkennen (Convolutional Neural Network CNN). 2015 prägten Hinton und seine Kollegen für tiefere Modelle mit mehr Neuronen-Schichten den Begriff Deep Learning.
Transformer-Architektur
Wichtige Impulse für die Sprachverarbeitung (Natural Language Processing NLP) gingen 2013 von einem Google-Team aus, das ein neuronales Netz so trainierte, dass die Nähe von Wörtern innerhalb eines Raumes ihre semantische Beziehung widerspiegelt. Das Team brachte seinem Worteinbettungssystem (word2vec) bei, das fehlende Wort in einem Satz vorherzusagen. Eine 2017 veröffentlichte Weiterentwicklung nannte Google Transformer-Architektur. Das Grundprinzip besteht darin, herauszufinden, welche Wörter in einem Satz am wichtigsten sind (Selbstaufmerksamkeit) und so einen Text in eine Zusammenfassung zu „transformieren“.
2019 veröffentlichte OpenAI sein Modell GPT-2, das auf 40 Gigabyte (acht Millionen Websites) mit 1,5 Milliarden Parametern trainiert worden war und so in der Lage sein sollte, das wahrscheinlichste nächste Wort in einer Sequenz vorherzusagen. GPT steht für Generative Pre-Trained Transformer. Am 30. November 2022 brachte OpenAI seinen Chatbot ChatGPT an die Öffentlichkeit. Nach einer Eingabeaufforderung (Prompt) produziert der Chatbot längere Texte aus unterschiedlichen Wissensfeldern, ist dabei aber fehleranfällig (halluziniert). Grundlagenmodelle (Foundation Models), die ein Trainingsfundament für spezifische Anwendungen bilden und auf Internetinhalten basieren nennt man große Sprachmodelle (Large Language Models LLM).
Diese Entwicklung der Künstlichen Intelligenz fasst die folgende Abbildung zusammen. Dabei ist KI ein Oberbegriff für verschiedene Technologien, der eine Erweiterung von Aspekten des Lernens und der Intelligenz durch eine Maschine beschreibt.
Mit einer KI, die neuronale Netze mit der Monte Carlo Tree Research (MCTR-) Methode kombiniert, ist es dem von Google akquirierten Unternehmen DeepMind seit 2015 nicht nur gelungen, einen der weltbesten Spieler in dem asiatischen Brettspiel Go zu besiegen, sondern auch die Faltungen von 200 Millionen Proteinen vorherzusagen. Dies zeigt, dass eine KI, die nach dem Prinzip des verstärkenden Lernens (Reinforcement Learning) arbeitet, sowohl die Produktivität erhöht als auch spezifisches Wissen und die daraus entstehenden Fähigkeiten erweitert. Bei einer Anwendung der generativen KI (GenAI) resultieren hieraus neue Perspektiven für die Wissensarbeit in Unternehmen. Mit Hilfe von wissensspezifischer (domain-specific) GenAI ergeben sich für die europäische Wirtschaft mit ihrem hohen Anteil an hochspezialisierten Unternehmen neue Möglichkeiten zur Differenzierung im Wettbewerb.
Nobelpreise für KI-Forscher
Die Nobelpreise für Physik haben 2024 John Hopfield und Geoffrey Hinton erhalten, die zum maschinellen Lernen und zu künstlichen neuronalen Netzen forschen. Eine Hälfte des Chemie-Nobelpreises ist ebenfalls 2024 an die bei der Google-Tochter DeepMind beschäftigten Demis Hassabis und John Jumper für ihre KI-basierte Vorhersage von komplexen Protein-Strukturen gegangen. Dies macht deutlich, dass es im Technologie- und Innovationsmanagement bei der Schaffung von neuem Wissen gravierende Veränderungen gibt.
Hype und Ernüchterung bei großen Sprachmodellen
Große Sprachmodelle (Large Language Models LLM) durchlaufen gegenwärtig einen Hype Cycle. Der technologische Auslöser war im November 2022 der von Open AI entwickelte Chatbot ChatGPT. Große Sprachmodelle auf Grundlage der von Google-Forschern 2017 vorgestellten Transformer-Technologie gab es schon länger. Aber ChatGPT erreichte die breite Masse und hatte nach zwei Monaten 100 Millionen Nutzer.
Der Gipfel der überzogenen Erwartungen zeigte sich in einer gigantischen Investitionsblase beim Rennen um die KI-Vorherrschaft von großen Digitalunternehmen und Start-ups.
Das Tal der Enttäuschung äußerte sich in der nicht erfüllten Management-Illusion, dass die hohen Investitionen auch zu gewinnbringenden Anwendungen führen und einer daraus resultierenden Börsen-Illusion.3
Ein möglicher Pfad der Erleuchtung könnte von kostengünstigen kleinen Sprachmodellen mit branchen-, unternehmens- und prozess-spezifischen Anwendungen ausgehen.
Ob, wann und wie genau mit wissensspezifischer KI ein Plateau der Produktivität erreicht wird, ist gegenwärtig noch nicht ganz klar. Wir gehen aber davon aus, dass sich hieraus Chancen für die europäische Wirtschaft ergeben. Diese Chancen sollten KI-Anbieter gemeinsam mit Anwendern nutzen.
Vorteile von kleinen und spezifischen KI-Modellen
Große Sprachmodelle streben an, möglichst viele Bereiche abzudecken und werden vor allem mit Daten aus dem Internet trainiert. Dies ist nicht nur zeit-, kosten- und energieintensiv, sondern der Grenznutzen zusätzlicher Daten nimmt ab. Bei Spezialaufgaben kann die Leistung großer Sprachmodelle sogar mit der Zeit schlechter werden.4
Diese Nachteile haben kleine Sprachmodelle nicht. Deren Training erfolgt auf der Grundlage von branchen-, unternehmens- und prozess-spezifischen Daten. So ist z.B. das Berliner Start-up Xayn auf Anwaltskanzleien und Rechtsabteilungen spezialisiert. Für das Training gibt es mehrere Ansätze, z.B.
– eine Retrieval Augmented Generation (RAG): Dabei erfolgt die Kopplung eines großen Sprachmodells an interne Datenbanken
– Continuous Pre-Training in Form von domänenspezifischen Modellen und
– das Training eigener Modelle mit vollständiger Kontrolle über die verwendeten Daten.
Start-ups aus den USA wie Databricks bieten ihren Kunden die gemeinsame Entwicklung von unternehmensspezifischen KI-Modellen an. Die Kosten für ein Training dieser maßgeschneiderten Modelle liegen deutlich unter denen für das Training z.B. von GPT-4 in Höhe von knapp 80 Millionen Dollar. Das Training erfolgt auf der Grundlage von individuellen Unternehmensdaten.5 Ein Risiko ist möglicherweise, in eine Abhängigkeit von Dienstleistern zu geraten. Die Alternative ist daher die Befähigung der eigenen Mitarbeitenden. Die Grundlage hierfür bildet eine KI-Personalstrategie für das Unternehmen.
Bei branchenspezifischen KI-Lösungen kann die Zusammenarbeit von etablierten Unternehmen mit Start-ups erfolgreich sein.6 Das Berliner Start-up Linetweet konzentriert sich z.B. auf KI-Tools für das Storemanagement im Einzelhandel. Linetweet hat bereits 2019 die Optikerkette Fielmann mit einem Tool zur digitalen Terminvereinbarung gewonnen. Dieses Tool wurde gemeinsam weiterentwickelt. Heute passt Store AI die Dienstpläne in Fielmann-Filialen auf der Grundlage unternehmensspezifischer Daten automatisch an und steigert so die Produktivität der Stores. Bislang gehört Linetweet zu 100 Prozent den beiden Gründern. Das Beispiel zeigt das Potenzial einer Verbindung des branchenspezifischen Wissens etablierter Unternehmen mit der KI-Kompetenz von Start-ups.
Gegenwärtig konzentrieren sich viele Unternehmen bei ihren KI-Anwendungen noch auf einzelne Vorgänge. Der wirklich große Durchbruch von KI wird vermutlich erst mit einer integrierten Sicht von Strategien und Geschäftsprozessen gelingen.7 Das sind die Themen unserer nächsten Blogposts.
Fazit
- Die Grundlage für die generative KI mit großen Sprachmodellen bilden neuronale Netze, deren Entwicklung vor vielen Jahrzehnten begonnen hat
- Die mit Nobelpreisen ausgezeichneten KI-Forscher haben das Technologie- und Innovationsmanagement verändert
- Nach der durch ChatGPT ausgelösten Hype-Phase zeichnet sich bei großen Sprachmodellen eine gewisse Ernüchterung ab
- Die wissensspezifische KI hat eine Reihe von Vorteilen, die europäische Unternehmen nutzen sollten.
Literatur
[1] Obmann, C., Was Chefs und Mitarbeiter jetzt zu KI wissen müssen. In: Handelsblatt, 17. Februar 2025, S. 32-33
[2] Meckel, M., Steinacker, L., Alles überall auf einmal – Wie Künstliche Intelligenz unsere Welt verändert und was wir dabei gewinnen können, Rowohlt 2024
[3] Holtermann, F., Holzki, L., de Souza Soares, A.P., Die große Sinnkrise. In: Handelsblatt, 9./ 10./ 11. August 2024, S. 46-51
[4] Bomke, L., Holzki, L., Welche KI für die Wirtschaft zählt. In: Handelsblatt, 23. September 2024, S. 20-23
[5] Bomke, L., Kerkmann, C., Scheuer, S., Die Firmen-KI wird bezahlbar. In: Handelsblatt, 3./ 4./ 5. Mai 2024, S. 30
[6] Bomke, L., Einzelhändler organisieren mit KI ihre Läden neu. In: Handelsblatt, 2. Januar 2025, S. 32
[7] Servatius, H.G., Wettbewerbsvorteile mit einer wissensspezifischen KI. In: Competivation Blog, 11. Februar 2025