Hype Cycle | Competivation
Entwicklung der KI-Technologien

Entwicklung der KI-Technologien

Zwischen der aktuellen Bedeutung des Themas Künstliche Intelligenz und der KI-Kompetenz der meisten Menschen besteht eine große Diskrepanz. Diese verbreitete Know-how-Lücke reicht von Schülern und Lehrern bis zu Führungskräften und Politikern. Daher erscheint es wichtig, sich mit der Entwicklung und dem aktuellen Stand der KI-Technologien zu beschäftigen, die bereits vor knapp 70 Jahren entstanden sind, was Vielen nicht bekannt ist.

Dieser neue Blogpost ist die Fortsetzung unserer Reihe zu Wettbewerbsvorteilen mit einer wissensspezifischen Künstlichen Intelligenz. Hierin skizziere ich die Wurzeln der KI-Technologien und erläutere den Hype und die Ernüchterung bei großen Sprachmodellen.

 

Schulungsoffensive ausgehend vom AI Act

Der AI Act der Europäischen Union fordert von Unternehmen, dass sie ihren Mitarbeitenden praktisches Know-how zur Funktionsweise und den Einsatzmöglichkeiten von KI sowie den Chancen und Grenzen der Technologie vermitteln müssen. Diese EU-Verordnung 2024/1689 ist in Deutschland am 2. Februar 2025 in Kraft getreten.1 Für einzelne Nutzergruppen wie z.B. IT-, Rechts-, Personal- und operative Einheiten können spezifische Trainingsmodule notwendig sein, die auf das vorhandene Wissensniveau auszurichten sind. Darüber hinaus erscheint es sinnvoll, die Vermittlung von KI-Know-how an die jeweilige Situation des Unternehmens anzupassen. Ein Einstieg sind Kenntnisse zur Entwicklung der Künstlichen Intelligenz (KI) und ihrer verschiedenen Technologien.

 

Von der symbolischen KI und neuronalen Netzen zu „KI-Wintern“

Die Künstliche Intelligenz hat in ihrer langen Entwicklungsgeschichte eine Reihe von Höhen und Tiefen erlebt. In den Computerwissenschaften der 1950er Jahre sind bei dem Versuch, Maschinen zu entwickeln, die menschliche Intelligenz nachahmen, zwei Herangehensweisen entstanden:2

  • Die symbolische KI basiert auf programmierbaren Regeln und einer systematischen Logik mit dem Ziel, Wissen zu repräsentieren und daraus Schlussfolgerungen abzuleiten. Dabei versucht man, ein reales Problem durch die Programmierung von Symbolen und ihren Beziehungen  
  • Angeregt durch die Vernetzung des Gehirns streben neuronale Netze an, Lernprozesse zu simulieren, indem sie Verbindungen zwischen künstlichen Neuronen nutzen. Diese Methode stützt sich auf ein datengetriebenes maschinelles Lernen, um Muster und Zusammenhänge zu finden.

Als Geburtsstunde der Künstlichen Intelligenz gilt das von Wissenschaftlern wie John McCarthy und Marvin Minsky 1956 initiierte Dartmouth-Sommer-Forschungsprojekt, bei dem die symbolische KI im Mittelpunkt stand. Diese bildet die Grundlage für Expertensysteme, die versuchen, Regeln und Entscheidungsketten in Computercode zu übersetzen. Deren Verfechter haben aber die Komplexität des Gehirns unterschätzt, was in den 1970er Jahren zum ersten „KI-Winter“ führte.

Das erste neuronale Netz konzipierte der Psychologe Frank Rosenblatt, der in Dartmouth nicht dabei war, ebenfalls bereits 1956. Inspiriert durch die Arbeit von Rosenblatt entwickelte der Physiologe, kognitive Psychologe und Informatiker Geoffrey Hinton 1986 an der Universität von Toronto ein mehrschichtiges neuronales Netz und einen Algorithmus, der es dem System ermöglichte, aus seinen Rechenfehlern zu lernen. Diese Methode der Fehlerrückverteilung (Backpropagation) führte zu einer Verfeinerung der Antworten. Sie bildete den Durchbruch für die neuronalen Netze. Allerdings reichte die Rechenleistung für große Datenmengen nicht und noch vor der Jahrtausendwende kam es zu einem zweiten „KI-Winter“.

 

Deep Learning

Eine Verbesserung der Hardware erreichte man mit den superschnellen Chips der Grafikprozessoren (Graphics Processing Units GPU), die der US-Halbleiterhersteller Nvidia zunächst für Videospiele entwickelte und später für das Training mehrschichtiger neuronaler Netze nutzte. Entscheidend waren dann verbesserte Methoden der Bilderkennung, die kleine Fehler nutzten, um Muster zu erkennen (Convolutional Neural Network CNN). 2015 prägten Hinton und seine Kollegen für tiefere Modelle mit mehr Neuronen-Schichten den Begriff Deep Learning.

 

Transformer-Architektur

Wichtige Impulse für die Sprachverarbeitung (Natural Language Processing NLP) gingen 2013 von einem Google-Team aus, das ein neuronales Netz so trainierte, dass die Nähe von Wörtern innerhalb eines Raumes ihre semantische Beziehung widerspiegelt. Das Team brachte seinem Worteinbettungssystem (word2vec) bei, das fehlende Wort in einem Satz vorherzusagen. Eine 2017 veröffentlichte Weiterentwicklung nannte Google Transformer-Architektur. Das Grundprinzip besteht darin, herauszufinden, welche Wörter in einem Satz am wichtigsten sind (Selbstaufmerksamkeit) und so einen Text in eine Zusammenfassung zu „transformieren“.

2019 veröffentlichte OpenAI sein Modell GPT-2, das auf 40 Gigabyte (acht Millionen Websites) mit 1,5 Milliarden Parametern trainiert worden war und so in der Lage sein sollte, das wahrscheinlichste nächste Wort in einer Sequenz vorherzusagen. GPT steht für Generative Pre-Trained Transformer. Am 30. November 2022 brachte OpenAI seinen Chatbot ChatGPT an die Öffentlichkeit. Nach einer Eingabeaufforderung (Prompt) produziert der Chatbot längere Texte aus unterschiedlichen Wissensfeldern, ist dabei aber fehleranfällig (halluziniert). Grundlagenmodelle (Foundation Models), die ein Trainingsfundament für spezifische Anwendungen bilden und auf Internetinhalten basieren nennt man große Sprachmodelle (Large Language Models LLM).

Diese Entwicklung der Künstlichen Intelligenz fasst die folgende Abbildung zusammen. Dabei ist KI ein Oberbegriff für verschiedene Technologien, der eine Erweiterung von Aspekten des Lernens und der Intelligenz durch eine Maschine beschreibt.

Lernprozess Innovationsstrategie

Mit einer KI, die neuronale Netze mit der Monte Carlo Tree Research (MCTR-) Methode kombiniert, ist es dem von Google akquirierten Unternehmen DeepMind seit 2015 nicht nur gelungen, einen der weltbesten Spieler in dem asiatischen Brettspiel Go zu besiegen, sondern auch die Faltungen von 200 Millionen Proteinen vorherzusagen. Dies zeigt, dass eine KI, die nach dem Prinzip des verstärkenden Lernens (Reinforcement Learning) arbeitet, sowohl die Produktivität erhöht als auch spezifisches Wissen und die daraus entstehenden Fähigkeiten erweitert. Bei einer Anwendung der generativen KI (GenAI) resultieren hieraus neue Perspektiven für die Wissensarbeit in Unternehmen. Mit Hilfe von wissensspezifischer (domain-specific) GenAI ergeben sich für die europäische Wirtschaft mit ihrem hohen Anteil an hochspezialisierten Unternehmen neue Möglichkeiten zur Differenzierung im Wettbewerb.

 

Nobelpreise für KI-Forscher

Die Nobelpreise für Physik haben 2024 John Hopfield und Geoffrey Hinton erhalten, die zum maschinellen Lernen und zu künstlichen neuronalen Netzen forschen. Eine Hälfte des Chemie-Nobelpreises ist ebenfalls 2024 an die bei der Google-Tochter DeepMind beschäftigten Demis Hassabis und John Jumper für ihre KI-basierte Vorhersage von komplexen Protein-Strukturen gegangen. Dies macht deutlich, dass es im Technologie- und Innovationsmanagement bei der Schaffung von neuem Wissen gravierende Veränderungen gibt.

 

Hype und Ernüchterung bei großen Sprachmodellen

Große Sprachmodelle (Large Language Models LLM) durchlaufen gegenwärtig einen Hype Cycle. Der technologische Auslöser war im November 2022 der von Open AI entwickelte Chatbot ChatGPT. Große Sprachmodelle auf Grundlage der von Google-Forschern 2017 vorgestellten Transformer-Technologie gab es schon länger. Aber ChatGPT erreichte die breite Masse und hatte nach zwei Monaten 100 Millionen Nutzer.

Der Gipfel der überzogenen Erwartungen zeigte sich in einer gigantischen Investitionsblase beim Rennen um die KI-Vorherrschaft von großen Digitalunternehmen und Start-ups.

Das Tal der Enttäuschung äußerte sich in der nicht erfüllten Management-Illusion, dass die hohen Investitionen auch zu gewinnbringenden Anwendungen führen und einer daraus resultierenden Börsen-Illusion.3

Lernprozess Innovationsstrategie

Ein möglicher Pfad der Erleuchtung könnte von kostengünstigen kleinen Sprachmodellen mit branchen-, unternehmens- und prozess-spezifischen Anwendungen ausgehen.

Ob, wann und wie genau mit wissensspezifischer KI ein Plateau der Produktivität erreicht wird, ist gegenwärtig noch nicht ganz klar. Wir gehen aber davon aus, dass sich hieraus Chancen für die europäische Wirtschaft ergeben. Diese Chancen sollten KI-Anbieter gemeinsam mit Anwendern nutzen.

 

Vorteile von kleinen und spezifischen KI-Modellen

Große Sprachmodelle streben an, möglichst viele Bereiche abzudecken und werden vor allem mit Daten aus dem Internet trainiert. Dies ist nicht nur zeit-, kosten- und energieintensiv, sondern der Grenznutzen zusätzlicher Daten nimmt ab. Bei Spezialaufgaben kann die Leistung großer Sprachmodelle sogar mit der Zeit schlechter werden.4

Diese Nachteile haben kleine Sprachmodelle nicht. Deren Training erfolgt auf der Grundlage von branchen-, unternehmens- und prozess-spezifischen Daten. So ist z.B. das Berliner Start-up Xayn auf Anwaltskanzleien und Rechtsabteilungen spezialisiert. Für das Training gibt es mehrere Ansätze, z.B.

–  eine Retrieval Augmented Generation (RAG): Dabei erfolgt die Kopplung eines großen Sprachmodells an interne Datenbanken
–  Continuous Pre-Training in Form von domänenspezifischen Modellen und
–  das Training eigener Modelle mit vollständiger Kontrolle über die verwendeten Daten.

Start-ups aus den USA wie Databricks bieten ihren Kunden die gemeinsame Entwicklung von unternehmensspezifischen KI-Modellen an. Die Kosten für ein Training dieser maßgeschneiderten Modelle liegen deutlich unter denen für das Training z.B. von GPT-4 in Höhe von knapp 80 Millionen Dollar. Das Training erfolgt auf der Grundlage von individuellen Unternehmensdaten.5 Ein Risiko ist möglicherweise, in eine Abhängigkeit von Dienstleistern zu geraten. Die Alternative ist daher die Befähigung der eigenen Mitarbeitenden. Die Grundlage hierfür bildet eine KI-Personalstrategie für das Unternehmen.

Bei branchenspezifischen KI-Lösungen kann die Zusammenarbeit von etablierten Unternehmen mit Start-ups erfolgreich sein.6 Das Berliner Start-up Linetweet konzentriert sich z.B. auf KI-Tools für das Storemanagement im Einzelhandel. Linetweet hat bereits 2019 die Optikerkette Fielmann mit einem Tool zur digitalen Terminvereinbarung gewonnen. Dieses Tool wurde gemeinsam weiterentwickelt. Heute passt Store AI die Dienstpläne in Fielmann-Filialen auf der Grundlage unternehmensspezifischer Daten automatisch an und steigert so die Produktivität der Stores. Bislang gehört Linetweet zu 100 Prozent den beiden Gründern. Das Beispiel zeigt das Potenzial einer Verbindung des branchenspezifischen Wissens etablierter Unternehmen mit der KI-Kompetenz von Start-ups.

Gegenwärtig konzentrieren sich viele Unternehmen bei ihren KI-Anwendungen noch auf einzelne Vorgänge. Der wirklich große Durchbruch von KI wird vermutlich erst mit einer integrierten Sicht von Strategien und Geschäftsprozessen gelingen.7 Das sind die Themen unserer nächsten Blogposts.

 

Fazit

  • Die Grundlage für die generative KI mit großen Sprachmodellen bilden neuronale Netze, deren Entwicklung vor vielen Jahrzehnten begonnen hat
  • Die mit Nobelpreisen ausgezeichneten KI-Forscher haben das Technologie- und Innovationsmanagement verändert
  • Nach der durch ChatGPT ausgelösten Hype-Phase zeichnet sich bei großen Sprachmodellen eine gewisse Ernüchterung ab
  • Die wissensspezifische KI hat eine Reihe von Vorteilen, die europäische Unternehmen nutzen sollten.

 

Literatur

[1] Obmann, C., Was Chefs und Mitarbeiter jetzt zu KI wissen müssen. In: Handelsblatt, 17. Februar 2025, S. 32-33

[2] Meckel, M., Steinacker, L., Alles überall auf einmal – Wie Künstliche Intelligenz unsere Welt verändert und was wir dabei gewinnen können, Rowohlt 2024

[3] Holtermann, F., Holzki, L., de Souza Soares, A.P., Die große Sinnkrise. In: Handelsblatt, 9./ 10./ 11. August 2024, S. 46-51

[4] Bomke, L., Holzki, L., Welche KI für die Wirtschaft zählt. In: Handelsblatt, 23. September 2024, S. 20-23

[5] Bomke, L., Kerkmann, C., Scheuer, S., Die Firmen-KI wird bezahlbar. In: Handelsblatt, 3./ 4./ 5. Mai 2024, S. 30

[6] Bomke, L., Einzelhändler organisieren mit KI ihre Läden neu. In: Handelsblatt, 2. Januar 2025, S. 32

[7] Servatius, H.G., Wettbewerbsvorteile mit einer wissensspezifischen KI. In: Competivation Blog, 11. Februar 2025

Entwicklung der KI-Technologien

Development of AI technologies

There is a large discrepancy between the current importance of the topic of artificial intelligence and the AI expertise of most people. This widespread know-how gap ranges from students and teachers to managers and politicians. It therefore seems important to look at the development and current status of AI technologies, which were created almost 70 years ago, something that many people are unaware of.

This new blog post is the continuation of our series on competitive advantage with knowledge-based artificial intelligence. In it, I outline the roots of AI technologies and explain the hype and disillusionment with large language models.

 

Training offensive based on the AI Act

The European Union’s AI Act requires companies to provide their employees with practical know-how on how AI works and how it can be used, as well as the opportunities and limitations of the technology. This EU Regulation 2024/1689 came into force in Germany on February 2, 2025.1 Specific training modules may be necessary for individual user groups, such as IT, legal, HR and operational units, which must be tailored to the existing level of knowledge. Furthermore, it seems sensible to adapt the teaching of AI know-how to the respective situation of the company. One place to start is with knowledge of the development of artificial intelligence (AI) and its various technologies

 

From symbolic AI and neural networks to „AI winters“

Artificial intelligence has experienced a series of ups and downs in its long development history. In the computer sciences of the 1950s, two approaches emerged in the attempt to develop machines that mimic human intelligence:2

  • Symbolic AI is based on programmable rules and a systematic logic with the aim of representing knowledge and deriving conclusions. The aim is to represent a real-world problem programming symbols and their relationships.
  • Inspired by the networking of the brain, neural networks aim to simulate learning processes by using connections between artificial neurons. This method relies on data-driven machine learning to find patterns and correlations.

The Dartmouth summer research project initiated by scientists such as John McCarthy and Marvin Minsky in 1956, which focused on symbolic AI, is regarded as the birth of artificial intelligence. This forms the basis for expert systems that attempt to translate rules and decision-making chains into computer code . However, its advocates underestimated the complexity of the brain, which led to the first „AI winter“ in the 1970s.

The first neural network was designed by psychologist Frank Rosenblatt, who was not present at Dartmouth, in 1956. Inspired by Rosenblatt’s work, physiologist, cognitive psychologist and computer scientist Geoffrey Hinton developed a multilayer neural network and an algorithm at the University of Toronto in 1986 that enabled the system to learn from its calculation errors. This method of backpropagation led to a refinement of the answers. It was the breakthrough for neural networks. However, the computing power was not sufficient for large amounts of data and a second „AI winter“ occurred before the turn of the millennium.

 

Deep learning

An improvement in hardware was achieved with the super-fast chips of the graphics processing units (GPU), which the US semiconductor manufacturer Nvidia initially developed for video games and later used to train multi-layer neural networks. Improved methods of image recognition that used small errors to recognize patterns (Convolutional Neural Network CNN) were then decisive. In 2015, Hinton and his colleagues coined the term deep learning for deeper models with more neuron layers.

 

Transformer architecture

In 2013, important impulses for Natural Language Processing (NLP) came from a Google team that trained a neural network in such a way that the proximity of words within a space reflects their semantic relationship. The team taught its word embedding system (word2vec) to predict the missing word in a sentence. A further development published in 2017 was called the Google Transformer architecture. The basic principle is to find out which words are most important in a sentence (self-attention) and thus „transform“ a text into a summary.

In 2019, OpenAI published its GPT-2 model, which had been trained on 40 gigabytes (eight million websites) with 1.5 billion parameters and should therefore be able to predict the most likely next word in a sequence. GPT stands for Generative Pre-Trained Transformer. On November 30, 2022, OpenAI launched its chatbot ChatGPT to the public. Following a prompt, the chatbot produces longer texts from different fields of knowledge, but is prone to errors (hallucinates). Foundation models that form a training foundation for specific applications and are based on Internet content are known as large language models (LLMs).

This development of artificial intelligence is summarized in the following figure. AI is a generic term for various technologies that describes an extension of aspects of learning and intelligence by a machine.

Lernprozess Innovationsstrategie

With an AI that combines neural networks with the Monte Carlo Tree Research (MCTR) method, DeepMind, a company acquired by Google, has not only managed to defeat one of the world’s best players in the Asian board game Go since 2015, but also to predict the folding of 200 million proteins. This shows that an AI that works according to the principle of reinforcement learning both increases productivity and expands specific knowledge and the resulting skills. When generative AI (GenAI) is applied, this results in new perspectives for knowledge work in companies. With the help of knowledge-specific (domain-specific) GenAI, the European economy, with its high proportion of highly specialized companies, has new opportunities to differentiate itself from the competition.

 

Nobel Prizes for AI researchers

The 2024 Nobel Prizes in Physics went to John Hopfield and Geoffrey Hinton, who conduct research into machine learning and artificial neural networks. One half of the 2024 Nobel Prize in Chemistry went to Demis Hassabis and John Jumper, who work at Google subsidiary DeepMind, for their AI-based prediction of complex protein structures. This makes it clear that there are serious changes in technology and innovation management in the creation of new knowledge.

 

Hype and disillusionment with large language models

Large language models (LLMs) are currently going through a hype cycle. The technological trigger was the chatbot ChatGPT developed by Open AI in November 2022. Large language models based on the Transformer technology presented by Google researchers in 2017 had been around for some time. But ChatGPT reached the masses and had 100 million users after two months.

The peak of exaggerated expectations was demonstrated by a gigantic investment bubble in the race for AI supremacy by large digital companies and start-ups.

The valley of disappointment manifested itself in the unfulfilled management illusion that the high investments would also lead to profitable applications and the resulting stock market illusion.3

Lernprozess Innovationsstrategie

One possible path to enlightenment could come from cost-effective small language models with industry-, company- and process-specific applications.

Whether, when and how exactly a plateau in productivity will be reached with knowledge-based AI is not yet entirely clear. However, we assume that this will result in opportunities for the European economy. AI providers should exploit these opportunities together with users.

 

Advantages of small and specific AI models

Large language models strive to cover as many areas as possible and are primarily trained with data from the internet. This is not only time-, cost- and energy-intensive, but the marginal benefit of additional data decreases. For specialized tasks, the performance of large language models can even deteriorate over time.(4)

Small language models do not have these disadvantages. Their training is based on industry-, company- and process-specific data. The Berlin start-up Xayn, for example, specializes in law firms and legal departments. There are several approaches to training, e.g.

– a Retrieval Augmented Generation (RAG): This involves the coupling of a large language model to internal databases
– Continuous pre-training in the form of domain-specific models and
– training of own models with complete control over the data used.

Start-ups from the USA, such as Databricks, offer their customers the joint development of company-specific AI models. The costs for training these customized models are significantly lower than those for training GPT-4, for example, which amount to almost 80 million dollars. The training is based on individual company data.5 One potential risk is becoming dependent on service providers. The alternative is therefore to empower your own employees. The basis for this is an AI human reource strategy for the company.

When it comes to industry-specific AI solutions, cooperation between established companies and start-ups can be successful.6 The Berlin start-up Linetweet, for example, focuses on AI tools for store management in the retail sector. Linetweet already won the optician chain Fielmann in 2019 with a tool for digital appointment scheduling. This tool was developed further together. Today, Store AI automatically adjusts the schedules in Fielmann stores based on company-specific data, thereby increasing store productivity. So far, Linetweet is wholly owned by the two founders. This example shows the potential of combining the industry-specific knowledge of established companies with the AI expertise of start-ups.

At present, many companies are still focusing on individual processes in their AI applications. The really big breakthrough of AI will probably only come with an integrated view of strategies and business processes.7 These are the topics of our next blog posts.

 

Conclusion

  • The basis for generative AI with large language models is formed by neural networks, the development of which began many decades ago
  • Nobel Prize-winning AI researchers have changed technology and innovation management
  • After the hype phase triggered by ChatGPT, a certain disillusionment is emerging in large language models
  • Knowledge-based AI has a number of advantages that European companies should explore.

 

Literature

[1] Obmann, C., What bosses and employees need to know about AI now. In: Handelsblatt, February 17, 2025, p. 32-33

[2] Meckel, M., Steinacker, L., Alles überall auf einmal – Wie Künstliche Intelligenz unsere Welt verändert und was wir dabei gewinnen können, Rowohlt 2024

[3] Holtermann, F., Holzki, L., de Souza Soares, A.P., The great crisis of meaning. In: Handelsblatt, August 9/10/11, 2024, pp. 46-51

[4] Bomke, L., Holzki, L., Which AI counts for the economy. In: Handelsblatt, September 23, 2024, p. 20-23

[5] Bomke, L., Kerkmann, C., Scheuer, S., Corporate AI becomes affordable. In: Handelsblatt, May 3 / 4 / 5, 2024, p. 30

[6] Bomke, L., Retailers reorganize their stores with AI. In: Handelsblatt, January 2, 2025, p. 32

[7] Servatius, H.G., Competitive advantages with a knowledge-specific AI. In: Competivation Blog, February 11, 2025

Interessiert?

CONNECTIVE MANAGEMENT

Vereinbaren Sie einen unverbindlichen Gesprächstermin:

 














    +49 (0)211 454 3731